LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS SIXTH SEMESTER – APRIL 2010

MT 6604/MT 5500 - MECHANICS - II

Date & Time: 17/04/2010 / 9:00 - 12:00	Dept. No.	Max. : 100 Marks

PART – A

Answer ALL the questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Define Centre of Gravity.
- 2. Where does the C.G of a uniform circular arc of radius 'a' subtending an angle 90° lie?
- 3. Write any two applications of the principle of virtual work.
- 4. Define span and sag of a catenary.
- 5. What is amplitude and frequency of a particle executing simple harmonic motion?
- 6. Define Simple Pendulum.
- 7. What are the radial and transverse components of a velocity?
- 8. What is the *p-r* equation of Hyperbola?
- 9. What is the moment of inertia of a circular disc about a tangent line?
- 10. Write down the expression for angular momentum and kinetic energy of a rigid body rotating about a fixed axis.

PART – B

Answer any FIVE questions:

 $(5 \times 8 = 40 \text{ marks})$

- 11. Find the center of gravity of a solid hemisphere.
- 12. Find the center of gravity of a sector of a circle of radius a subtending an angle 2α at the center. Deduce the center of gravity of the quadrant of the circle.
- 13. A solid hemisphere is supported by a string fixed to a point A on its rim and to a point O on a smooth vertical wall with which a curved surface of the sphere is in contact at P. If θ and φ are the inclinations of the string and the plane base of the hemisphere to the vertical, prove that $\tan \varphi = \frac{3}{8} + \tan \theta$.
- 14. Derive the equation of the common catenary in the form $y = C \cosh x/c$.
- 15. A string 10 cms long can just support a mass of 20 gms. A mass of 3 gms is attached at one end and the other end is kept fixed. If the mass revolves uniformly in a horizontal circle, find the greatest number of revolutions it can make per second.

(P.T.O.)

- 16. A second pendulum is carried down with a lift at a uniform acceleration of 20 cm/sec². How many seconds an hour will it lose?
- 17. Derive the differential equation of the central orbit in polar co-ordinates.
- 18. Find the moment of inertia of the right solid cone of height h and semi-vertical angle α about its axis.

PART - C

Answer any TWO questions:

 $(2 \times 20 = 40 \text{ marks})$

- 19. (a) A square hole is punched out of a circular lamina of a radius 'a' having a radius as its diagonal. Show that the centre of gravity of the remaining is at a distance $\frac{a}{4\pi a}$ from the center of the circle.
 - (b) Four rods, each of length a and weight W are smoothly joined together to form a rhombus ABCD, which is kept in shape by a light rod BD. The angle BAD is 60° and the rhombus is suspended in a vertical plane from A. Find the thrust in BD.
- 20. (a) An endless uniform chain rests in equilibrium over a smooth pulley and is in contact with its over three quarters of the circumference . Show that the length of the free portion is $\frac{\sqrt{2}}{\log(\sqrt{2}+1)}$ times the radius of the pulley.
 - (b) If a particle moving with S.H.M. has velocity u, v, w, when its distances from an arbitrary point in the straight line are a, b, c respectively, prove that its

period *T* is given by the equation
$$\frac{4\pi^2}{T^2}(b-c)(c-a)(a-b) = \begin{vmatrix} u^2 & v^2 & w^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$$
. (10 + 10)

- 21. (a) A particle P describes the orbit $r^n = a^n \cos n\theta$ under a central force, the pole being the centre. Find the law of force.
 - (b) Derive the expression for the Kinetic energy of a rigid body moving in 2-dimentions. (10 + 10)
 - 22. (a) Find the moment of inertia of a parabolic plate cut off by an ordinate at a distance h from the vertex, about the tangent at the vertex.
 - (b) Find the moment of inertia of a hollow sphere about a diameter, its internal and external radii being b and a. (10 + 10)

\$\$\$\$\$\$\$